Assessing the Impact of Molecular Testing on Antimicrobial Stewardship in the Treatment of Pneumonia

Megan Hull, PharmD

PGY1 Pharmacy Resident CHI Saint Joseph Health – Saint Joseph Hospital meganhull2@sjhlex.org

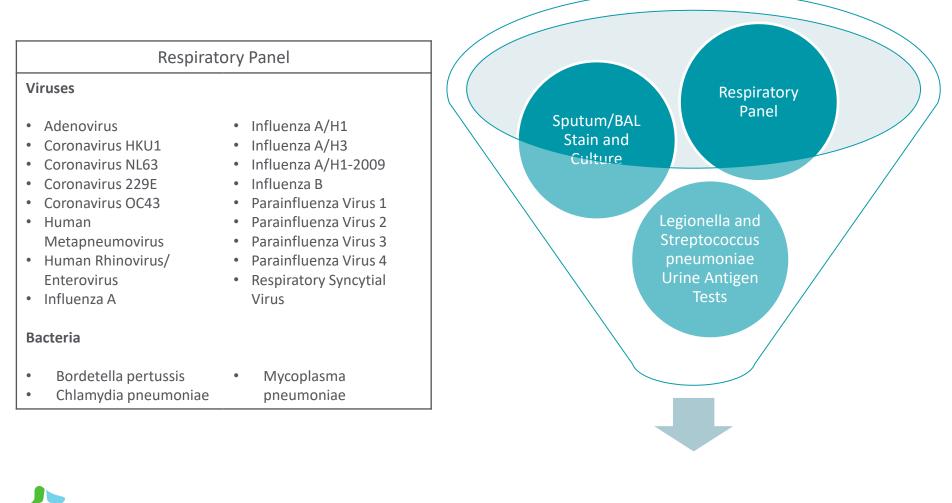
KHA Quality Conference March 6, 2020

- Describe the use of molecular testing as a component of antimicrobial stewardship at a community hospital.
- Discuss barriers to implementation of rapid diagnostic technology and how to mitigate them.

Saint Joseph Hospital

- 433 bed tertiary medical center
- 50 ICU beds
 - Medical/Surgical
 - Neurosurgery
 - Cardiothoracic Surgery
 - Coronary
- Antimicrobial Stewardship
 Program was established in
 July 2009.
 - Infectious Disease Physician
 - Infectious Disease Pharmacist
 - Director of Infection Control

Project and Purpose


Project: Pilot of the BioFire[®] FilmArray[®] Pneumonia Panel in mechanically ventilated patients with suspected pneumonia in the intensive care units

Purpose:

- Streamline identification of pathogens in patients with suspected pneumonia
- Decrease the time to effective antibiotics
- Decrease the time to de-escalation of antimicrobial therapy

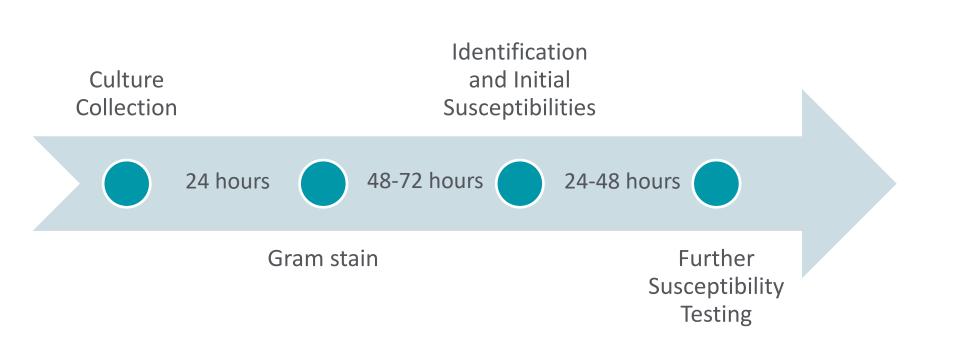
Current Pulmonary Pathogen Identification

CHI Saint Joseph Health

Implementation

- BioFire[®] FilmArray[®] Pneumonia Panel
 - 33 Targets including bacteria, viruses, and resistance genes

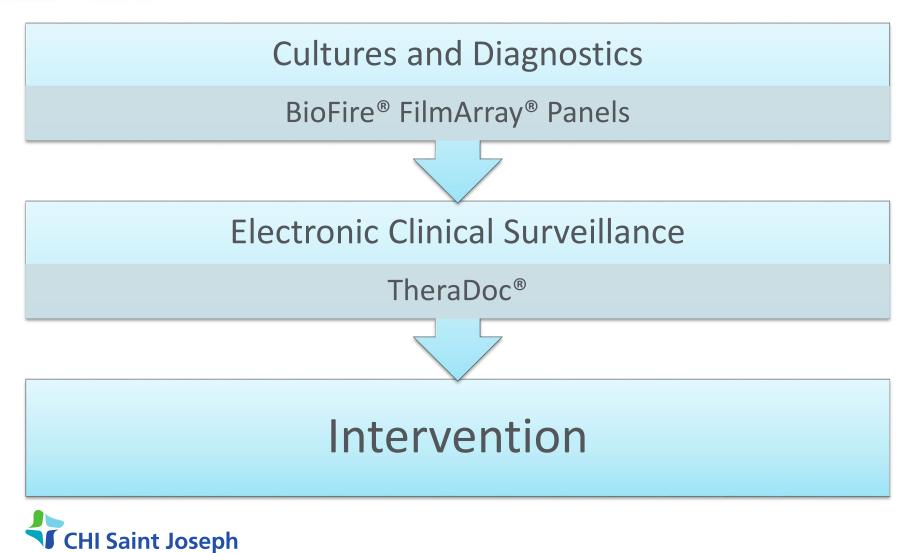
	teria Ialitative)	Atypical Bacteria (qualitative)	Viruses	Resistance Genes
 Acinetobacter calcoaceticus- baumannii complex Enterobacter cloacae complex Escherichia coli Haemophilus influenza Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae group 	 Moraxella catarrhalis Proteus spp. Pseudomonas aeruginosa Serratia marcescens Staphylococcus aureus Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pyogenes 	 Chlamydia pneumoniae Legionella pneumophila Mycoplasma pneumoniae 	 Adenovirus Coronavirus Human Metapneumovirus Human Rhinovirus/Enterovi rus Influenza A Influenza B Parainfluenza Virus Respiratory Syncytial Virus 	Methicillin resistance: • mecA/C and MREJ Carbapenemases: • KPC • NDM • Oxa-48-like • VIM • IMP ESBL: • CTX-M



2019 Antibiogram Data

- Lower Respiratory Isolates in 2019:
 - Gram negative isolates:
 - ESBL producing 12/220 (5%)
 - Resistance to at least one carbapenem 22/220 (10%)
 - Gram positive isolates:
 - MRSA 48/114 (42%)
 - Total Resistance:
 - 82/334 (~25%)

Determining Resistance


Pneumonia Panel

- BioFire[®] FilmArray[®] Pneumonia Panel
 - 33 Targets including bacteria, viruses, and resistance genes

	teria Jalitative)	Atypical Bacteria (qualitative)	Viruses	Resistance Genes
 Acinetobacter calcoaceticus- baumannii complex Enterobacter cloacae complex Escherichia coli Haemophilus influenza Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae group 	 Moraxella catarrhalis Proteus spp. Pseudomonas aeruginosa Serratia marcescens Staphylococcus aureus Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pyogenes 	 Chlamydia pneumoniae Legionella pneumophila Mycoplasma pneumoniae 	 Adenovirus Coronavirus Human Metapneumovirus Human Rhinovirus/Enterovi rus Influenza A Influenza B Parainfluenza Virus Respiratory Syncytial Virus 	Methicillin resistance: • mecA/C and MREJ Carbapenemases: • KPC • NDM • Oxa-48-like • VIM • IMP ESBL: • CTX-M

Current Practices with Molecular Testing

Health

Rapid Diagnostics

- BioFire[®] FilmArray[®] Blood Culture ID
- BioFire[®] FilmArray[®] Gastrointestinal Panel
- BioFire[®] FilmArray[®] Meningitis/Encephalitis Panel
- BioFire[®] FilmArray[®] Respiratory Panel

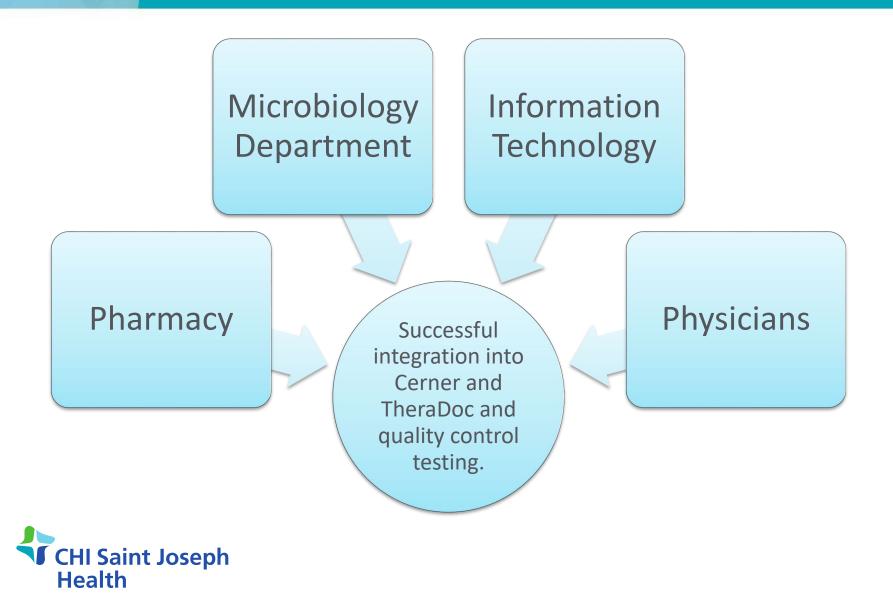
Electronic Clinical Surveillance

• Email

Title: EZ Alert: PNEUPCRPNL Alert: 65346164 rev: 0 ()
Admit Diagnosis: Private
Sex: Private
Height: Private
Weight: Private

• Online

ert Time	Alert						
	EZ Alert: PNEUP	CRPNL		Admit Diagn	osis: PNEUMONITIS DUE	TO INHALATION OF	FOOD AND V
Dismiss	Age:		Sex: M				
Suppress	SCr: 4 (02/24/2020)		Height: 69 in (175 cm)				
Suppress	CrCl: 16 mL/min(Cockcroft-Gault; weight used=71 kg)			Weight: 163 lb (74.1 kg)			
		weight used=71 kg)		we	ight. 105 ib (/4.1 kg)		
Intervention	This patient ma	atches the EZ Alert criteria: 'EZ Alert: Pl	NEUPCRPNL'		ight. 105 lb (74.1 kg)		
Intervention	This patient ma		NEUPCRPNL'	Collected	Result Status (Date/Time)	Specimen #	Ordering Provider
Intervention		atches the EZ Alert criteria: 'EZ Alert: Pl			Result Status	Specimen #	



Barriers to Implementation

- Information Technology
 - Quality Control Testing
 - Integration into Cerner
 - Integration into TheraDoc
- Provider Education
 - Ordering Test
 - Interpreting Results
 - Antibiotic Selection
- Contaminated Specimens vs. Questionable Quality Specimens

Information Technology

Provider Education

• Ordering Test

Search: pneumonia 🔍 Advanc	ced Options 🗸
📭 🖆 🚖 🝷 🛅 🗎 Folder:	Tetails for Pneumonia PCR Panel w/Respiratory Culture
Pneumonia Education	📸 Details 📴 Order Comments 🕼 Diagnoses
Pneumonia PCR Panel w/Respiratory Culture	
	*Specimen type:
	Body site: Bronchial Alveolar Lavage
	Sputum
	Tracheal Aspirate
	*Requested Collection Date and Time:
	Collected by:
	Frequency: 1-Time
	Duration:
	Duration unit:

Provider Education: Interpreting Results

Lab Results	1/9/2020 16:09 EST	
Bacteriology		
Staphylococcus aureus	Not Detected	
Streptococcus agalactiae	Not Detected	
Streptococcus pyogenes	Not Detected	
Streptococcus pneumoniae	Not Detected	
Haemophilus influenzae	Not Detected	
Pseudomonas aeruginosa	Not Detected	
Enterobacter cloacae complex	Not Detected	
Escherichia coli	Not Detected	
Klebsiella oxytoca	Not Detected	
Proteus	Not Detected	
Serratia marcescens	Not Detected	
KPC	Not Applicable	
Respiratory Culture	See Result	
Legionella Pneumophila	Detected (A)	
Chlamudia popumoniae DCD	Not Detected	

CTX-M	Not Applicable
IMP	Not Detected
mecA/C and MREJ	Not Applicable
NDM	Not Applicable
OXA-48-like	Not Applicable
VIM	Not Applicable

A. calco-baumannii complex	Not Detected	
K. aerogenes	Not Detected	
K. pneumoniae group	Not Detected	
M. catarrhalis	Not Detected	
Virology		
Influenza A	Not Detected	
Influenza B	Not Detected	
Rhinovirus/Enterovirus	Not Detected	
Human Metapneumovirus	Not Detected	
Adenovirus	Not Detected	
Coronavirus	Not Detected	
Respiratory Syncytial Virus	Not Detected	
Parainfluenza virus	Detected (A)	

CTX-M	Not Detected	
IMP	Not Detected	
mecA/C and MREJ	Not Detected	
NDM	Not Detected	
OXA-48-like	Not Detected	
VIM	Not Detected	

Provider Education

Antimicrobial Selection

- Laminated cards were printed and given to physicians
- Using antibiogram data, empiric antimicrobial therapies were determined
- Special comments such as isolation precautions added, where necessary

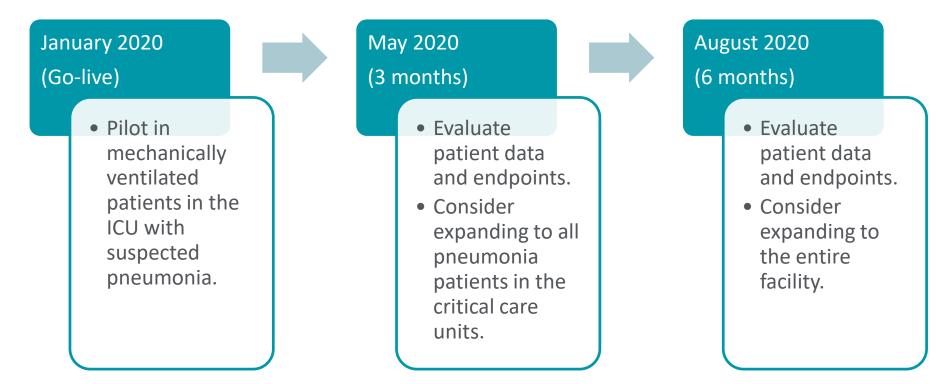
Viruses				
Adenovirus	Supportive care	Droplet + contact precautions		
Coronavirus OR Rhinovirus/Enterovirus	Supportive care	Droplet precautions		
Human Metapneumovirus OR Parainfluenza Virus	Supportive care	Contact precautions		
Influenza A/B	Oseitamivir 75mg PO BID	Droplet precautions		
Respiratory Syncytial Virus	Supportive care ± ribavirin* "In consultation with ID	Contact precautions		
Antimicrobial-Resistance Ge	nes			
KPC (carbapenemase)	Vabornere (meropenem- vaborbactam) 4g IV q8h	Consult ID and Implement containment precautions		
NDM, VIM, IMP (carbapenemase)	Aztreonam 2g IV q8h	Consult ID and Implement containment precautions		
Oxa-48-Like (carbapenemase)	Avycaz (ceftazidime- avibactam) 2.5g IV q8h	Consult ID and Implement containment precautions		
CTX-M (ESBL)	Meropenem 500mg IV q6h	Containment precautions		

Contaminated Specimens vs. Questionable Quality Specimens

- Sepsis committee determined how to proceed based on type of specimen:
 - Sputum must be screened prior to performing the Pneumonia PCR panel.
 - > 25 epithelial cells per LPF Contaminated Specimen specimen rejected
 - < 25 WBC per LPF Questionable Quality Specimen specimen accepted and reflexed, comments added to culture results indicating specimen of questionable quality
 - BAL, induced sputum, and tracheal aspirate always acceptable specimens.
 - No screening, cannot be rejected

Outcomes

- In-hospital mortality
- Overall and ICU length-of-stay
- 30-day readmission
- Total cost of hospitalization
- Time to initiation of effective antimicrobial therapy
- Time to antibiotic de-escalation (i.e., reduction in the # of agents or conversion to a more narrow-spectrum agent)
- Weighted value of antibiotics received during admission (based on weighted scoring system)
- Time to speciation (i.e., routine microbiological testing vs. rapid molecular diagnostics)
- Duration of mechanical ventilation



- Education of all hospitalists, pulmonary, critical care, and infectious disease physicians
- Identified areas of improvement and have implemented resolutions
- Pneumonia Panels are continuing to be successfully completed and continuously monitored since the go-live date

Next Steps

• Evaluate and Expand

Assessing the Impact of Molecular Testing on Antimicrobial Stewardship in the Treatment of Pneumonia

Megan Hull, PharmD

PGY1 Pharmacy Resident CHI Saint Joseph Health – Saint Joseph Hospital meganhull2@sjhlex.org

KHA Quality Conference March 6, 2020

